This section provides an example for configuring a dual-homing single-active BD EVPN. The active/standby status of dual-homing PEs is determined based on the DF election result in a scenario where a CE is dual-homed to PEs in a BD EVPN working in single-active mode.
In Figure 1, to allow sites to communicate across the backbone network, configure EVPN functions so that the sites can exchange EVPN routes to transmit Layer 2 traffic. In a scenario where a CE is dual-homed to PEs in single-active mode, you can configure the PEs to determine the active/standby status based on the DF election result. In addition, the local and remote FRR function for MAC routes and BFD need to be configured to improve reliability and traffic switching performance on PEs.
When configuring a dual-homing single-active BD EVPN, note the following:
RTs in the export RT list of the EVPN instance on the local PE must be the same as RTs in the import RT list of the remote PE.
Using the local loopback interface address of each PE as an EVPN source address is recommended.
The configuration roadmap is as follows:
Configure an IGP on the backbone network to allow PEs and the RR to communicate.
Configure basic MPLS functions and enable MPLS LDP to establish an LDP LSP on the backbone network.
Configure a BD EVPN instance on each PE.
Configure an ESI and the dual-homing single-active mode for the BD EVPN; configure the PEs to determine their active/standby status based on the DF election result.
Establish BGP EVPN peer relationships.
Configure CEs to access PEs through physical interfaces.
To complete the configuration, you need the following data:
EVPN instance evpna's RDs (100:1, 200:1, and 300:1) and RTs (1:1) on each PE
# Configure PE1.
[~PE1] ospf 1 [*PE1-ospf-1] area 0 [*PE1-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255 [*PE1-ospf-1-area-0.0.0.0] network 1.1.1.1 0.0.0.0 [*PE1-ospf-1-area-0.0.0.0] commit [~PE1-ospf-1-area-0.0.0.0] quit [~PE1-ospf-1] quit
# Configure PE2.
[~PE2] ospf 1 [*PE2-ospf-1] area 0 [*PE2-ospf-1-area-0.0.0.0] network 10.2.1.0 0.0.0.255 [*PE2-ospf-1-area-0.0.0.0] network 2.2.2.2 0.0.0.0 [*PE2-ospf-1-area-0.0.0.0] commit [~PE2-ospf-1-area-0.0.0.0] quit [~PE2-ospf-1] quit
# Configure PE3.
[~PE3] ospf 1 [*PE3-ospf-1] area 0 [*PE3-ospf-1-area-0.0.0.0] network 10.3.1.0 0.0.0.255 [*PE3-ospf-1-area-0.0.0.0] network 4.4.4.4 0.0.0.0 [*PE3-ospf-1-area-0.0.0.0] commit [~PE3-ospf-1-area-0.0.0.0] quit [~PE3-ospf-1] quit
# Configure the RR.
[~RR] ospf 1 [*RR-ospf-1] area 0 [*RR-ospf-1-area-0.0.0.0] network 10.1.1.0 0.0.0.255 [*RR-ospf-1-area-0.0.0.0] network 10.2.1.0 0.0.0.255 [*RR-ospf-1-area-0.0.0.0] network 10.3.1.0 0.0.0.255 [*RR-ospf-1-area-0.0.0.0] network 3.3.3.3 0.0.0.0 [*RR-ospf-1-area-0.0.0.0] commit [~RR-ospf-1-area-0.0.0.0] quit [~RR-ospf-1] quit
After the configurations are complete, PE1, PE2, and PE3 can establish OSPF neighbor relationships with the RR. Run the display ospf peer command. The command output shows that State of the neighbor relationship is Full. Run the display ip routing-table command. The command output shows that the RR and PEs have learned the routes to Loopback1 of one another.
The following example uses the command output on PE1.
[~PE1] display ospf peer (M) Indicates MADJ neighbor OSPF Process 1 with Router ID 1.1.1.1 Neighbors Area 0.0.0.0 interface 10.1.1.1 (GE0/1/8)'s neighbors Router ID: 3.3.3.3 Address: 10.1.1.2 State: Full Mode:Nbr is Master Priority: 1 DR: 10.1.1.1 BDR: 10.1.1.2 MTU: 0 Dead timer due in 38 sec Retrans timer interval: 5 Neighbor is up for 00h01m12s Authentication Sequence: [ 0 ] [~PE1] display ip routing-table Route Flags: R - relay, D - download to fib, T - to vpn-instance, B - black hole route ------------------------------------------------------------------------------ Routing Table : _public_ Destinations : 13 Routes : 13 Destination/Mask Proto Pre Cost Flags NextHop Interface 1.1.1.1/32 Direct 0 0 D 127.0.0.1 LoopBack1 2.2.2.2/32 OSPF 10 2 D 10.1.1.2 GigabitEthernet0/1/8 3.3.3.3/32 OSPF 10 1 D 10.1.1.2 GigabitEthernet0/1/8 4.4.4.4/32 OSPF 10 2 D 10.1.1.2 GigabitEthernet0/1/8 127.0.0.0/8 Direct 0 0 D 127.0.0.1 InLoopBack0 127.0.0.1/32 Direct 0 0 D 127.0.0.1 InLoopBack0 127.255.255.255/32 Direct 0 0 D 127.0.0.1 InLoopBack0 10.1.1.0/24 Direct 0 0 D 10.1.1.1 GigabitEthernet0/1/8 10.1.1.1/32 Direct 0 0 D 127.0.0.1 GigabitEthernet0/1/8 10.1.1.255/32 Direct 0 0 D 127.0.0.1 GigabitEthernet0/1/8 10.2.1.0/24 OSPF 10 2 D 10.1.1.2 GigabitEthernet0/1/8 10.3.1.0/24 OSPF 10 2 D 10.1.1.2 GigabitEthernet0/1/8 255.255.255.255/32 Direct 0 0 D 127.0.0.1 InLoopBack0
# Configure PE1.
[~PE1] mpls lsr-id 1.1.1.1 [*PE1] mpls [*PE1-mpls] quit [*PE1] mpls ldp [*PE1-mpls-ldp] quit [*PE1] interface gigabitethernet 0/1/8 [*PE1-GigabitEthernet0/1/8] mpls [*PE1-GigabitEthernet0/1/8] mpls ldp [*PE1-GigabitEthernet0/1/8] commit [~PE1-GigabitEthernet0/1/8] quit
# Configure PE2.
[~PE2] mpls lsr-id 2.2.2.2 [*PE2] mpls [*PE2-mpls] quit [*PE2] mpls ldp [*PE2-mpls-ldp] quit [*PE2] interface gigabitethernet 0/1/8 [*PE2-GigabitEthernet0/1/8] mpls [*PE2-GigabitEthernet0/1/8] mpls ldp [*PE2-GigabitEthernet0/1/8] commit [~PE2-GigabitEthernet0/1/8] quit
# Configure the RR.
[~RR] mpls lsr-id 3.3.3.3 [*RR] mpls [*RR-mpls] quit [*RR] mpls ldp [*RR-mpls-ldp] quit [*RR] interface gigabitethernet 0/1/0 [*RR-GigabitEthernet0/1/0] mpls [*RR-GigabitEthernet0/1/0] mpls ldp [*RR-GigabitEthernet0/1/0] quit [*RR] interface gigabitethernet 0/1/8 [*RR-GigabitEthernet0/1/8] mpls [*RR-GigabitEthernet0/1/8] mpls ldp [*RR-GigabitEthernet0/1/8] quit [*RR] interface gigabitethernet 0/1/16 [*RR-GigabitEthernet0/1/16] mpls [*RR-GigabitEthernet0/1/16] mpls ldp [*RR-GigabitEthernet0/1/16] commit [~RR-GigabitEthernet0/1/16] quit
# Configure PE3.
[~PE3] mpls lsr-id 4.4.4.4 [*PE3] mpls [*PE3-mpls] quit [*PE3] mpls ldp [*PE3-mpls-ldp] quit [*PE3] interface gigabitethernet 0/1/0 [*PE3-GigabitEthernet0/1/0] mpls [*PE3-GigabitEthernet0/1/0] mpls ldp [*PE3-GigabitEthernet0/1/0] commit [~PE3-GigabitEthernet0/1/0] quit
After the configurations are complete, LDP sessions can be established between the PEs and RR. Run the display mpls ldp session command. The command output shows that Status is Operational. Then, run the display mpls ldp lsp command. The command output shows that an LDP LSP has been successfully established.
The following example uses the command output on PE1.
[~PE1] display mpls ldp session LDP Session(s) in Public Network Codes: LAM(Label Advertisement Mode), SsnAge Unit(DDDD:HH:MM) An asterisk (*) before a session means the session is being deleted. -------------------------------------------------------------------------- PeerID Status LAM SsnRole SsnAge KASent/Rcv -------------------------------------------------------------------------- 3.3.3.3:0 Operational DU Passive 0000:00:05 22/22 -------------------------------------------------------------------------- TOTAL: 1 Session(s) Found. [~PE1] display mpls ldp lsp LDP LSP Information ------------------------------------------------------------------------------- Flag after Out IF: (I) - RLFA Iterated LSP, (I*) - Normal and RLFA Iterated LSP ------------------------------------------------------------------------------- DestAddress/Mask In/OutLabel UpstreamPeer NextHop OutInterface ------------------------------------------------------------------------------- 1.1.1.1/32 3/NULL 3.3.3.3 127.0.0.1 LoopBack1 *1.1.1.1/32 Liberal/32828 DS/3.3.3.3 2.2.2.2/32 NULL/32829 - 10.1.1.2 GE0/1/8 2.2.2.2/32 32829/32829 3.3.3.3 10.1.1.2 GE0/1/8 3.3.3.3/32 NULL/3 - 10.1.1.2 GE0/1/8 3.3.3.3/32 32828/3 3.3.3.3 10.1.1.2 GE0/1/8 4.4.4.4/32 NULL/32830 - 10.1.1.2 GE0/1/8 4.4.4.4/32 32830/32830 3.3.3.3 10.1.1.2 GE0/1/8 ------------------------------------------------------------------------------- TOTAL: 7 Normal LSP(s) Found. TOTAL: 1 Liberal LSP(s) Found. TOTAL: 0 FRR LSP(s) Found. An asterisk (*) before an LSP means the LSP is not established An asterisk (*) before a Label means the USCB or DSCB is stale An asterisk (*) before an UpstreamPeer means the session is stale An asterisk (*) before a DS means the session is stale An asterisk (*) before a NextHop means the LSP is FRR LSP
# Configure PE1.
[~PE1] evpn vpn-instance evpna bd-mode [*PE1-evpn-instance-evpna] route-distinguisher 100:1 [*PE1-evpn-instance-evpna] vpn-target 1:1 [*PE1-evpn-instance-evpna] quit [*PE1] bridge-domain 10 [*PE1-bd10] evpn binding vpn-instance evpna [*PE1-bd10] quit [*PE1] commit
# Configure PE2.
[~PE2] evpn vpn-instance evpna bd-mode [*PE2-evpn-instance-evpna] route-distinguisher 200:1 [*PE2-evpn-instance-evpna] vpn-target 1:1 [*PE2-evpn-instance-evpna] quit [*PE2] bridge-domain 10 [*PE2-bd10] evpn binding vpn-instance evpna [*PE2-bd10] quit [*PE2] commit
# Configure PE3.
[~PE3] evpn vpn-instance evpna bd-mode [*PE3-evpn-instance-evpna] route-distinguisher 300:1 [*PE3-evpn-instance-evpna] vpn-target 1:1 [*PE3-evpn-instance-evpna] quit [*PE3] bridge-domain 10 [*PE3-bd10] evpn binding vpn-instance evpna [*PE3-bd10] quit [*PE3] commit
# Configure PE1.
[~PE1] evpn source-address 1.1.1.1 [*PE1] commit
# Configure PE2.
[~PE2] evpn source-address 2.2.2.2 [*PE2] commit
# Configure PE3.
[~PE3] evpn source-address 4.4.4.4 [*PE3] commit
# Configure PE1.
[~PE1] interface gigabitethernet 0/1/0 [~PE1-GigabitEthernet0/1/0] esi 0000.1111.2222.1111.1111 [*PE1-GigabitEthernet0/1/0] quit [*PE1] interface gigabitethernet 0/1/0.1 mode l2 [*PE1-GigabitEthernet0/1/0.1] encapsulation dot1q vid 2 [*PE1-GigabitEthernet0/1/0.1] rewrite pop single [*PE1-GigabitEthernet0/1/0.1] bridge-domain 10 [*PE1-GigabitEthernet0/1/0.1] quit [*PE1] evpn [*PE1-evpn] esi 0000.1111.2222.1111.1111 [*PE1-evpn-esi-0000.1111.2222.1111.1111] evpn redundancy-mode single-active df-election [*PE1-evpn-esi-0000.1111.2222.1111.1111] quit [*PE1-evpn] quit [*PE1] commit
# Configure PE2.
[~PE2] interface gigabitethernet 0/1/0 [~PE2-GigabitEthernet0/1/0] esi 0000.1111.2222.1111.1111 [*PE2-GigabitEthernet0/1/0] quit [*PE2] interface gigabitethernet 0/1/0.1 mode l2 [*PE2-GigabitEthernet0/1/0.1] encapsulation dot1q vid 2 [*PE2-GigabitEthernet0/1/0.1] rewrite pop single [*PE2-GigabitEthernet0/1/0.1] bridge-domain 10 [*PE2-GigabitEthernet0/1/0.1] quit [*PE2] evpn [*PE2-evpn] esi 0000.1111.2222.1111.1111 [*PE2-evpn-esi-0000.1111.2222.1111.1111] evpn redundancy-mode single-active df-election [*PE2-evpn-esi-0000.1111.2222.1111.1111] quit [*PE2-evpn] quit [*PE2] commit
# Configure PE3.
[~PE3] interface gigabitethernet 0/1/8.1 mode l2 [*PE3-GigabitEthernet0/1/8.1] encapsulation dot1q vid 2 [*PE3-GigabitEthernet0/1/8.1] rewrite pop single [*PE3-GigabitEthernet0/1/8.1] bridge-domain 10 [*PE3-GigabitEthernet0/1/8.1] quit [*PE3] commit
# Configure PE1.
[~PE1] evpn [*PE1-evpn] vlan-extend private enable [*PE1-evpn] vlan-extend redirect enable [*PE1-evpn] local-remote frr enable [*PE1-evpn] quit [*PE1] commit
# Configure PE2.
[~PE2] evpn [*PE2-evpn] vlan-extend private enable [*PE2-evpn] vlan-extend redirect enable [*PE2-evpn] local-remote frr enable [*PE2-evpn] quit [*PE2] commit
# Configure PE1.
[~PE1] bfd [*PE1-bfd] quit [*PE1] bfd bfd1 bind peer-ip 2.2.2.2 track-interface interface GigabitEthernet0/1/0 [*PE1-bfd-session-bfd1] discriminator local 1 [*PE1-bfd-session-bfd1] discriminator remote 2 [*PE1-bfd-session-bfd1] quit [*PE1] bfd bfd2 bind peer-ip 2.2.2.2 source-ip 1.1.1.1 [*PE1-bfd-session-bfd2] discriminator local 3 [*PE1-bfd-session-bfd2] discriminator remote 4 [*PE1-bfd-session-bfd2] quit [*PE1] interface gigabitethernet 0/1/0 [*PE1-GigabitEthernet0/1/0] es track bfd bfd2 [*PE1-GigabitEthernet0/1/0] quit [*PE1] commit
# Configure PE2.
[~PE2] bfd [*PE2-bfd] quit [*PE2] bfd bfd1 bind peer-ip 1.1.1.1 source-ip 2.2.2.2 [*PE2-bfd-session-bfd1] discriminator local 2 [*PE2-bfd-session-bfd1] discriminator remote 1 [*PE2-bfd-session-bfd1] quit [*PE2] bfd bfd2 bind peer-ip 1.1.1.1 track-interface interface GigabitEthernet0/1/0 [*PE2-bfd-session-pe2tope1] discriminator local 4 [*PE2-bfd-session-pe2tope1] discriminator remote 3 [*PE2-bfd-session-pe2tope1] quit [*PE2] interface gigabitethernet 0/1/0 [*PE2-GigabitEthernet0/1/0] es track bfd bfd1 [*PE2-GigabitEthernet0/1/0] quit [*PE2] commit
# Configure PE1.
[~PE1] bgp 100 [*PE1-bgp] peer 3.3.3.3 as-number 100 [*PE1-bgp] peer 3.3.3.3 connect-interface loopback 1 [*PE1-bgp] l2vpn-family evpn [*PE1-bgp-af-evpn] peer 3.3.3.3 enable [*PE1-bgp-af-evpn] quit [*PE1-bgp] quit [*PE1] commit
# Configure PE2.
[~PE2] bgp 100 [*PE2-bgp] peer 3.3.3.3 as-number 100 [*PE2-bgp] peer 3.3.3.3 connect-interface loopback 1 [*PE2-bgp] l2vpn-family evpn [*PE2-bgp-af-evpn] peer 3.3.3.3 enable [*PE2-bgp-af-evpn] quit [*PE2-bgp] quit [*PE2] commit
# Configure PE3.
[~PE3] bgp 100 [*PE3-bgp] peer 3.3.3.3 as-number 100 [*PE3-bgp] peer 3.3.3.3 connect-interface loopback 1 [*PE3-bgp] l2vpn-family evpn [*PE3-bgp-af-evpn] peer 3.3.3.3 enable [*PE3-bgp-af-evpn] quit [*PE3-bgp] quit [*PE3] commit
# Configure the RR.
[~RR] bgp 100 [*RR-bgp] peer 1.1.1.1 as-number 100 [*RR-bgp] peer 1.1.1.1 connect-interface loopback 1 [*RR-bgp] peer 2.2.2.2 as-number 100 [*RR-bgp] peer 2.2.2.2 connect-interface loopback 1 [*RR-bgp] peer 4.4.4.4 as-number 100 [*RR-bgp] peer 4.4.4.4 connect-interface loopback 1 [*RR-bgp] l2vpn-family evpn [*RR-bgp-af-evpn] undo policy vpn-target [*RR-bgp-af-evpn] peer 1.1.1.1 enable [*RR-bgp-af-evpn] peer 1.1.1.1 reflect-client [*RR-bgp-af-evpn] peer 2.2.2.2 enable [*RR-bgp-af-evpn] peer 2.2.2.2 reflect-client [*RR-bgp-af-evpn] peer 4.4.4.4 enable [*RR-bgp-af-evpn] peer 4.4.4.4 reflect-client [*RR-bgp-af-evpn] quit [*RR-bgp] quit [*RR] commit
After completing the configurations, run the display bgp evpn peer command on the RR. The command output shows that BGP peer relationships have been established between the PEs and RR and are in the Established state.
[~RR] display bgp evpn peer
BGP local router ID : 3.3.3.3
Local AS number : 100
Total number of peers : 3 Peers in established state : 3
Peer V AS MsgRcvd MsgSent OutQ Up/Down State PrefRcv
1.1.1.1 4 100 10 18 0 00:00:11 Established 6
2.2.2.2 4 100 10 20 0 00:00:12 Established 6
4.4.4.4 4 100 6 18 0 00:00:13 Established 2
# Configure CE1.
[~CE1] vlan 2 [*CE1-vlan2] quit [*CE1] interface gigabitethernet0/1/0 [*CE1-GigabitEthernet0/1/0] portswitch [*CE1-GigabitEthernet0/1/0] port link-type trunk [*CE1-GigabitEthernet0/1/0] port trunk allow-pass vlan 2 [*CE1-GigabitEthernet0/1/0] quit [*CE1] interface gigabitethernet0/1/8 [*CE1-GigabitEthernet0/1/8] portswitch [*CE1-GigabitEthernet0/1/8] port link-type trunk [*CE1-GigabitEthernet0/1/8] port trunk allow-pass vlan 2 [*CE1-GigabitEthernet0/1/8] quit [*CE1] commit
# Configure CE2.
[~CE2] vlan 2 [*CE2-vlan2] quit [*CE2] interface gigabitethernet0/1/0 [*CE2-GigabitEthernet0/1/0] portswitch [*CE2-GigabitEthernet0/1/0] port link-type trunk [*CE2-GigabitEthernet0/1/0] port trunk allow-pass vlan 2 [*CE2-GigabitEthernet0/1/0] quit [*CE2] commit
# Configure CE1.
[~CE1] cfm enable [*CE1] cfm md 1001 [*CE1-md-1001] ma 4000 [*CE1-md-1001-ma-4000] map vlan 2 [*CE1-md-1001-ma-4000] ccm-interval 10 [*CE1-md-1001-ma-4000] mep mep-id 2000 interface GigabitEthernet0/1/0 outward [*CE1-md-1001-ma-4000] mep ccm-send mep-id 2000 enable [*CE1-md-1001-ma-4000] remote-mep mep-id 4000 [*CE1-md-1001-ma-4000] remote-mep ccm-receive mep-id 4000 enable [*CE1-md-1001-ma-4000] quit [*CE1-md-1001] ma 6000 [*CE1-md-1001-ma-6000] map vlan 2 [*CE1-md-1001-ma-6000] ccm-interval 10 [*CE1-md-1001-ma-6000] mep mep-id 6000 interface GigabitEthernet0/1/8 outward [*CE1-md-1001-ma-6000] mep ccm-send mep-id 6000 enable [*CE1-md-1001-ma-6000] remote-mep mep-id 8000 [*CE1-md-1001-ma-6000] remote-mep ccm-receive mep-id 8000 enable [*CE1-md-1001-ma-6000] quit [*CE1-md-1001] quit [*CE1] cfm trigger vlan 2 mac-renew [*CE1] commit
# Configure PE1.
[~PE1] cfm enable [*PE1] cfm md 1001 [*PE1-md-1001] ma 4000 [*PE1-md-1001-ma-4000] map bridge-domain 10 [*PE1-md-1001-ma-4000] ccm-interval 10 [*PE1-md-1001-ma-4000] mep mep-id 4000 interface GigabitEthernet0/1/0.1 vlan 2 outward [*PE1-md-1001-ma-4000] mep ccm-send mep-id 4000 enable [*PE1-md-1001-ma-4000] remote-mep mep-id 2000 [*PE1-md-1001-ma-4000] remote-mep ccm-receive mep-id 2000 enable [*PE1-md-1001-ma-4000] quit [*PE1-md-1001] quit [*PE1] oam-mgr [*PE1-oam-mgr] oam-bind ingress evpn df interface GigabitEthernet0/1/0.1 egress cfm md 1001 ma 4000 [*PE1-oam-mgr] quit [*PE1] commit
# Configure PE2.
[~PE2] cfm enable [*PE2] cfm md 1001 [*PE2-md-1001] ma 6000 [*PE2-md-1001-ma-6000] map bridge-domain 10 [*PE2-md-1001-ma-6000] ccm-interval 10 [*PE2-md-1001-ma-6000] mep mep-id 8000 interface GigabitEthernet0/1/0.1 vlan 2 outward [*PE2-md-1001-ma-6000] mep ccm-send mep-id 8000 enable [*PE2-md-1001-ma-6000] remote-mep mep-id 6000 [*PE2-md-1001-ma-6000] remote-mep ccm-receive mep-id 6000 enable [*PE2-md-1001-ma-6000] quit [*PE2-md-1001] quit [*PE2] oam-mgr [*PE2-oam-mgr] oam-bind ingress evpn df interface GigabitEthernet0/1/0.1 egress cfm md 1001 ma 6000 [*PE2-oam-mgr] quit [*PE2] commit
# Configure CE1.
[~CE1] interface vlanif2 [*CE1-Vlanif2] ip address 192.168.1.11 24 [*CE1-Vlanif2] quit [~CE1] commit
# Configure CE2.
[~CE2] interface vlanif2 [*CE2-Vlanif2] ip address 192.168.1.12 24 [*CE2-Vlanif2] quit [~CE2] commit
# On CE1, ping an IP address on the same network segment as CE2. The following example uses the command output on CE1.
[~CE1] ping 192.168.1.12
PING 192.168.1.12: 56 data bytes, press CTRL_C to break
Reply from 192.168.1.12: bytes=56 Sequence=1 ttl=255 time=13 ms
Reply from 192.168.1.12: bytes=56 Sequence=2 ttl=255 time=4 ms
Reply from 192.168.1.12: bytes=56 Sequence=3 ttl=255 time=3 ms
Reply from 192.168.1.12: bytes=56 Sequence=4 ttl=255 time=4 ms
Reply from 192.168.1.12: bytes=56 Sequence=5 ttl=255 time=4 ms
--- 192.168.1.12 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 3/5/13 ms
# Run the display evpn vpn-instance name vpn-instance-name df result command on PE1 and PE2 to check the DF election result. The command output shows that PE1 is the DF and PE2 is a non-DF.
[~PE1] display evpn vpn-instance name evpna df result ESI Count: 1 ESI: 0000.1111.2222.1111.1111 IFName GigabitEthernet 0/1/0: DF Result : Primary [~PE2] display evpn vpn-instance name evpna df result ESI Count: 1 ESI: 0000.1111.2222.1111.1111 IFName GigabitEthernet 0/1/0: DF Result : Backup
# Run the display bgp evpn all routing-table mac-route command on PE3 to view the MAC route destined for CE1 and sent from remote PE. According to the DF election result, PE1 is in the active state, so that PE1 on the primary path functions as the next hop in the MAC route destined for CE1.
[~PE3] display bgp evpn all routing-table mac-route
Local AS number : 100
BGP Local router ID is 10.3.1.2
Status codes: * - valid, > - best, d - damped, x - best external, a - add path,
h - history, i - internal, s - suppressed, S - Stale
Origin : i - IGP, e - EGP, ? - incomplete
EVPN address family:
Number of Mac Routes: 2
Route Distinguisher: 100:1
Network(EthTagId/MacAddrLen/MacAddr/IpAddrLen/IpAddr) NextHop
*>i 0:48:00e0-fc12-5678:32:0.0.0.0 1.1.1.1
Route Distinguisher: 300:1
Network(EthTagId/MacAddrLen/MacAddr/IpAddrLen/IpAddr) NextHop
*> 0:48:00e0-fc12-3333:0:0.0.0.0 0.0.0.0
EVPN-Instance evpna:
Number of Mac Routes: 2
Network(EthTagId/MacAddrLen/MacAddr/IpAddrLen/IpAddr) NextHop
*>i 0:48:00e0-fc12-5678:32:0.0.0.0 1.1.1.1
*> 0:48:00e0-fc12-3333:0:0.0.0.0 0.0.0.0
PE1 configuration file
# sysname PE1 # cfm enable # evpn vlan-extend private enable vlan-extend redirect enable local-remote frr enable # mac-duplication # esi 0000.1111.2222.1111.1111 evpn redundancy-mode single-active df-election # evpn vpn-instance evpna bd-mode route-distinguisher 100:1 vpn-target 1:1 export-extcommunity vpn-target 1:1 import-extcommunity # bfd # mpls lsr-id 1.1.1.1 # mpls # bridge-domain 10 evpn binding vpn-instance evpna # mpls ldp # ipv4-family # interface GigabitEthernet0/1/0 undo shutdown es track bfd bfd2 esi 0000.1111.2222.1111.1111 # interface GigabitEthernet0/1/0.1 mode l2 encapsulation dot1q vid 2 rewrite pop single bridge-domain 10 # interface GigabitEthernet0/1/8 undo shutdown ip address 10.1.1.1 255.255.255.0 mpls mpls ldp # interface LoopBack1 ip address 1.1.1.1 255.255.255.255 # bfd bfd1 bind peer-ip 2.2.2.2 track-interface interface GigabitEthernet0/1/0 discriminator local 1 discriminator remote 2 # bfd bfd2 bind peer-ip 2.2.2.2 source-ip 1.1.1.1 discriminator local 3 discriminator remote 4 # bgp 100 peer 3.3.3.3 as-number 100 peer 3.3.3.3 connect-interface LoopBack1 # ipv4-family unicast undo synchronization peer 3.3.3.3 enable # l2vpn-family evpn policy vpn-target peer 3.3.3.3 enable # ospf 1 area 0.0.0.0 network 1.1.1.1 0.0.0.0 network 10.1.1.0 0.0.0.255 # cfm md 1001 ma 4000 map bridge-domain 10 ccm-interval 10 mep mep-id 4000 interface GigabitEthernet0/1/0.1 vlan 2 outward mep ccm-send mep-id 4000 enable remote-mep mep-id 2000 remote-mep ccm-receive mep-id 2000 enable # oam-mgr oam-bind ingress evpn df interface GigabitEthernet0/1/0.1 egress cfm md 1001 ma 4000 # evpn source-address 1.1.1.1 # return
PE2 configuration file
# sysname PE2 # cfm enable # evpn vlan-extend private enable vlan-extend redirect enable local-remote frr enable # mac-duplication # esi 0000.1111.2222.1111.1111 evpn redundancy-mode single-active df-election # evpn vpn-instance evpna bd-mode route-distinguisher 200:1 vpn-target 1:1 export-extcommunity vpn-target 1:1 import-extcommunity # bfd # mpls lsr-id 2.2.2.2 # mpls # bridge-domain 10 evpn binding vpn-instance evpna # mpls ldp # ipv4-family # interface GigabitEthernet0/1/0 undo shutdown es track bfd bfd1 esi 0000.1111.2222.1111.1111 # interface GigabitEthernet0/1/0.1 mode l2 encapsulation dot1q vid 2 rewrite pop single bridge-domain 10 # interface GigabitEthernet0/1/8 undo shutdown ip address 10.2.1.1 255.255.255.0 mpls mpls ldp # interface LoopBack1 ip address 2.2.2.2 255.255.255.255 # bfd bfd1 bind peer-ip 1.1.1.1 source-ip 2.2.2.2 discriminator local 2 discriminator remote 1 # bfd bfd2 bind peer-ip 1.1.1.1 track-interface interface GigabitEthernet0/1/0 discriminator local 4 discriminator remote 3 # bgp 100 peer 3.3.3.3 as-number 100 peer 3.3.3.3 connect-interface LoopBack1 # ipv4-family unicast undo synchronization peer 3.3.3.3 enable # l2vpn-family evpn policy vpn-target peer 3.3.3.3 enable # ospf 1 area 0.0.0.0 network 2.2.2.2 0.0.0.0 network 10.2.1.0 0.0.0.255 # cfm md 1001 ma 6000 map bridge-domain 10 ccm-interval 10 mep mep-id 8000 interface GigabitEthernet0/1/0.1 vlan 2 outward mep ccm-send mep-id 8000 enable remote-mep mep-id 6000 remote-mep ccm-receive mep-id 6000 enable # oam-mgr oam-bind ingress evpn df interface GigabitEthernet0/1/0.1 egress cfm md 1001 ma 6000 # evpn source-address 2.2.2.2 # return
PE3 configuration file
# sysname PE3 # evpn vpn-instance evpna bd-mode route-distinguisher 300:1 vpn-target 1:1 export-extcommunity vpn-target 1:1 import-extcommunity # mpls lsr-id 4.4.4.4 # mpls # bridge-domain 10 evpn binding vpn-instance evpna # mpls ldp # ipv4-family # interface GigabitEthernet0/1/0 undo shutdown ip address 10.3.1.2 255.255.255.0 mpls mpls ldp # interface GigabitEthernet0/1/8 undo shutdown # interface GigabitEthernet0/1/8.1 mode l2 encapsulation dot1q vid 2 rewrite pop single bridge-domain 10 # interface LoopBack1 ip address 4.4.4.4 255.255.255.255 # bgp 100 peer 3.3.3.3 as-number 100 peer 3.3.3.3 connect-interface LoopBack1 # ipv4-family unicast undo synchronization peer 3.3.3.3 enable # l2vpn-family evpn policy vpn-target peer 3.3.3.3 enable # ospf 1 area 0.0.0.0 network 4.4.4.4 0.0.0.0 network 10.3.1.0 0.0.0.255 # evpn source-address 4.4.4.4 # return
RR configuration file
# sysname RR # mpls lsr-id 3.3.3.3 # mpls # mpls ldp # ipv4-family # interface GigabitEthernet0/1/0 undo shutdown ip address 10.1.1.2 255.255.255.0 mpls mpls ldp # interface GigabitEthernet0/1/8 undo shutdown ip address 10.2.1.2 255.255.255.0 mpls mpls ldp # interface GigabitEthernet0/1/16 undo shutdown ip address 10.3.1.1 255.255.255.0 mpls mpls ldp # interface LoopBack1 ip address 3.3.3.3 255.255.255.255 # bgp 100 peer 1.1.1.1 as-number 100 peer 1.1.1.1 connect-interface LoopBack1 peer 2.2.2.2 as-number 100 peer 2.2.2.2 connect-interface LoopBack1 peer 4.4.4.4 as-number 100 peer 4.4.4.4 connect-interface LoopBack1 # ipv4-family unicast undo synchronization peer 1.1.1.1 enable peer 2.2.2.2 enable peer 4.4.4.4 enable # l2vpn-family evpn undo policy vpn-target peer 1.1.1.1 enable peer 1.1.1.1 reflect-client peer 2.2.2.2 enable peer 2.2.2.2 reflect-client peer 4.4.4.4 enable peer 4.4.4.4 reflect-client # ospf 1 area 0.0.0.0 network 3.3.3.3 0.0.0.0 network 10.1.1.0 0.0.0.255 network 10.2.1.0 0.0.0.255 network 10.3.1.0 0.0.0.255 # return
CE1 configuration file
# sysname CE1 # vlan batch 2 # vlan 2 # cfm enable cfm trigger vlan 2 mac-renew # interface Vlanif2 ip address 192.168.1.11 255.255.255.0 # interface GigabitEthernet0/1/0 undo shutdown portswitch port link-type trunk port trunk allow-pass vlan 2 # interface GigabitEthernet0/1/8 undo shutdown portswitch port link-type trunk port trunk allow-pass vlan 2 # cfm md 1001 ma 4000 map vlan 2 ccm-interval 10 mep mep-id 2000 interface GigabitEthernet0/1/0 outward mep ccm-send mep-id 2000 enable remote-mep mep-id 4000 remote-mep ccm-receive mep-id 4000 enable ma 6000 map vlan 2 ccm-interval 10 mep mep-id 6000 interface GigabitEthernet0/1/8 outward mep ccm-send mep-id 6000 enable remote-mep mep-id 8000 remote-mep ccm-receive mep-id 8000 enable # return
CE2 configuration file
#
sysname CE2
#
vlan batch 2
#
vlan 2
#
interface Vlanif2
ip address 192.168.1.12 255.255.255.0
#
interface GigabitEthernet0/1/0
undo shutdown
portswitch
port link-type trunk
port trunk allow-pass vlan 2
#
return