Example for Configuring Frame LM for a PW

This section provides an example for configuring frame loss measurement (LM) for a pseudo wire (PW).

Networking Requirements

As a connection-oriented packet switching technology, Multiprotocol Label Switching Transport Profile (MPLS-TP) is designed to convert a circuit switched transport network to a packet switched transport network. The purpose is to increase the transmission rate on the transport network.

Link reliability must be ensured when MPLS-TP is used. Although users do not sense a change in voice quality if the frame loss ratio on voice links is lower than 10%, for example, the frame loss ratio higher than 20% causes obvious reductions of voice quality.

Frame LM can be used to collect frame loss statistics and evaluate link performance. LM is a performance monitoring function provided by MPLS-TP and is classified as single-ended frame LM or dual-ended frame LM.

The configuration of dual-ended frame LM is used as an example in this section. Regardless of single-ended or dual-ended, DM configurations on PEs are the same except the statistics display configurations.

On the network shown in Figure 1, LSRA, LSRB, and LSRC are connected using a PW built over a bidirectional label switched path (LSP). The following deployment is made to ensure the connectivity between LSRA and LSRC:
  • LSRA and LSRC serve as MEPs.
  • LSRB serves as a MIP.
Figure 1 PW over a bidirectional LSP

Interfaces 1 through 2 in this example are GE 0/1/0 and GE 0/1/8, respectively.



Table 1 Interfaces and IP addresses

Device

Interface

IP Address

LSRA

Loopback1

1.1.1.1/32

GigabitEthernet0/1/0

2.1.1.1/24

LSRB

Loopback1

2.2.2.2/32

GigabitEthernet0/1/0

2.1.1.2/24

GigabitEthernet0/1/8

3.2.1.1/24

LSRC

Loopback1

3.3.3.3/32

GigabitEthernet0/1/8

3.2.1.2/24

Configuration Roadmap

The configuration roadmap is as follows:

  1. Create a maintenance entity (ME) instance and bind it to a PW.

  2. Enable continuity check (CC) and connectivity verification (CV) on the MEP and its remote MEP (RMEP).

  3. Configure an alarm threshold for lost frames.

  4. Enable dual-ended frame LM.

Data Preparation

To complete the configuration, you need the following data:

  • MEG name

  • ID of the virtual circuit (VC) bound to the ME

  • Alarm threshold for lost frames

Procedure

  1. Configure a PW over a bidirectional LSP.

    For configuration details, see "Configuration Examples" in HUAWEI NetEngine 8000 F SeriesRouter Configuration Guide - VPN or "Configuration Files" in this section.

  2. Create an ME instance and bind it to the PW.

    # Create an ME instance named test on LSRA and bind it to the PW.
    [~LSRA] mpls-tp meg test
    [*LSRA-mpls-tp-meg-test] me l2vc peer-ip 3.3.3.3 vc-id 30000 vc-type vlan mep-id 1 remote-mep-id 2
    # Create an ME instance named test on LSRC and bind it to the PW.
    [~LSRC] mpls-tp meg test
    [*LSRC-mpls-tp-meg-test] me l2vc peer-ip 1.1.1.1 vc-id 30000 vc-type vlan mep-id 2 remote-mep-id 1

  3. Enable CC and CV on the MEP and RMEP.

    # Enable CC and CV on LSRA.
    [~LSRA-mpls-tp-meg-test] cc send enable
    [~LSRA-mpls-tp-meg-test] cc receive enable
    # Enable CC and CV on LSRC.
    [~LSRC-mpls-tp-meg-test] cc send enable
    [~LSRC-mpls-tp-meg-test] cc receive enable

  4. Enable dual-ended frame LM.

    # Enable dual-ended frame LM on LSRA.
    [~LSRA-mpls-tp-meg-test] lost-measure dual-ended enable
    [~LSRA-mpls-tp-meg-test] return
    # Enable dual-ended frame LM on LSRC.
    [~LSRC-mpls-tp-meg-test] lost-measure dual-ended enable
    [~LSRC-mpls-tp-meg-test] return

  5. Verify the configuration.

    After completing the configurations, run the display mpls-tp oam command on LSRA to view frame loss statistics.

    <LSRA> display mpls-tp oam meg test statistic-type lost-measure dual-ended
    Dual-end loss measurement statistics:
    Index Near-end lost frames Loss ratio Far-end lost frames Loss ratio
    1     10                   12.50%     10                  12.50%
    Max near-end lost frames:10,frame loss ratio:12.50%
    Min near-end lost frames:10,frame loss ratio:12.50%
    Average near-end lost frames:10,frame loss ratio:12.50%
    Max far-end lost frames:10,frame loss ratio:12.50%
    Min far-end lost frames:10,frame loss ratio:12.50%
    Average far-end lost frames:10,frame loss ratio:12.50%   

Configuration Files

  • LSRA configuration file

    #
     sysname LSRA
    #
     mpls lsr-id 1.1.1.1
     mpls
      mpls te
    #
     mpls l2vpn
    #
     bidirectional static-cr-lsp ingress Tunnel10
      forward nexthop 2.1.1.2 out-label 20
      backward in-label 20
    #
    pw-template tpatoc
     peer-address 3.3.3.3
     control-word
     tnl-policy tpatoc
    #
    interface GigabitEthernet0/1/0
     undo shutdown
     ip address 2.1.1.1 255.255.255.0
     mpls
     mpls te
    #
    interface GigabitEthernet0/1/0.1
     vlan-type dot1q 1
     mpls
     mpls static-l2vc pw-template tpatoc 30000 transmit-vpn-label 101 receive-vpn-label 101
     mpls l2vpn pw traffic-statistics enable
    #
    interface LoopBack1
     ip address 1.1.1.1 255.255.255.255
    #
    interface Tunnel10
     ip address unnumbered interface LoopBack1
     tunnel-protocol mpls te
     destination 2.2.2.2
     mpls te signal-protocol cr-static
     mpls te tunnel-id 100
     mpls te bidirectional
     mpls te reserved-for-binding
    #
     ip route-static 2.2.2.2 255.255.255.255 2.1.1.2
     ip route-static 3.3.3.3 255.255.255.255 2.1.1.2
    #
    tunnel-policy tpatoc
     tunnel binding destination 2.2.2.2 te Tunnel10
    #
     mpls-tp meg test
      me l2vc peer-ip 3.3.3.3 vc-id 30000 vc-type vlan mep-id 1 remote-mep-id 2
      cc send enable
      cc receive enable
    lost-measure dual-ended enable
    #
    return 
  • LSRB configuration file

    #
     sysname LSRB
    #
     mpls lsr-id 2.2.2.2
     mpls
      mpls te
    #
     bidirectional static-cr-lsp transit lsp1
      forward in-label 20 nexthop 3.2.1.2 out-label 40
      backward in-label 16 nexthop 2.1.1.1 out-label 20
    #
    interface GigabitEthernet0/1/0
     undo shutdown
     ip address 2.1.1.2 255.255.255.0
     mpls
     mpls te
    #
    interface GigabitEthernet0/1/8
     undo shutdown
     ip address 3.2.1.1 255.255.255.0
     mpls
     mpls te
    #
    interface LoopBack1
     ip address 2.2.2.2 255.255.255.255
    #
     ip route-static 1.1.1.1 255.255.255.255 2.1.1.1
     ip route-static 3.3.3.3 255.255.255.255 3.2.1.2
    #
    return  
  • LSRC configuration file

    #
     sysname LSRC
    #
     mpls lsr-id 3.3.3.3
     mpls
      mpls te
    #
     mpls l2vpn
    #
     bidirectional static-cr-lsp egress lsp1
      forward in-label 40 lsrid 1.1.1.1 tunnel-id 100
      backward nexthop 3.2.1.1 out-label 16
    #
    pw-template tpctoa
     peer-address 1.1.1.1
     control-word
     tnl-policy tpctoa
    #
    interface GigabitEthernet0/1/0
     undo shutdown
     ip address 3.2.1.2 255.255.255.0
     mpls
     mpls te
    #
    interface GigabitEthernet0/1/0.1
     vlan-type dot1q 1
     mpls static-l2vc pw-template tpctoa 30000 transmit-vpn-label 101 receive-vpn-label 
    101
     mpls l2vpn pw traffic-statistics enable
    #
    interface LoopBack1
     ip address 3.3.3.3 255.255.255.255
    #
    interface Tunnel20
     ip address unnumbered interface LoopBack1
     tunnel-protocol mpls te
     destination 1.1.1.1
     mpls te signal-protocol cr-static
     mpls te tunnel-id 200
     mpls te passive-tunnel
     mpls te binding bidirectional static-cr-lsp egress lsp1
     mpls te reserved-for-binding
    #
     ip route-static 1.1.1.1 255.255.255.255 3.2.1.1
     ip route-static 2.2.2.2 255.255.255.255 3.2.1.1
    #
    tunnel-policy tpctoa
     tunnel binding destination 1.1.1.1 te Tunnel10
    #
     mpls-tp meg test
      me l2vc peer-ip 1.1.1.1 vc-id 30000 vc-type vlan mep-id 2 remote-mep-id 1
      cc send enable
      cc receive enable
    lost-measure dual-ended enable
    #
    return  
Copyright © Huawei Technologies Co., Ltd.
Copyright © Huawei Technologies Co., Ltd.
< Previous topic Next topic >