This section provides an example for configuring frame delay measurement (DM) for a pseudo wire (PW).
As a connection-oriented packet switching technology, Multiprotocol Label Switching Transport Profile (MPLS-TP) is designed to convert a circuit switched transport network to a packet switched transport network. The purpose is to increase the transmission rate on the transport network.
Link reliability must be ensured when MPLS-TP is used. Voice services are used as an example. The coding and decoding of voice packets plus the transmission delay make the delay in VoIP transmission much longer than that in common circuit switched voice transmission. If the delay is longer than 400 ms, the voice quality is affected. If the delay is longer than 2 seconds, VoIP services are unavailable. In addition, if the delay variation (jitter) is longer than the transmission duration of a voice packet, voice quality will drop greatly.
Frame DM can be used to collect delay and jitter statistics and evaluate link performance. DM is a performance monitoring function provided by MPLS-TP and is classified as one-way frame DM or two-way frame DM.
The configuration of two-way frame DM is used as an example in this section. Regardless of one-way or two-way, DM configurations on LSRs are the same except the statistics display configurations.
Interfaces 1 through 2 in this example are GE 0/1/0 and GE 0/1/8, respectively.
Device |
Interface |
IP Address |
---|---|---|
LSRA |
Loopback1 |
1.1.1.1/32 |
GigabitEthernet0/1/0 |
2.1.1.1/24 |
|
LSRB |
Loopback1 |
2.2.2.2/32 |
GigabitEthernet0/1/0 |
2.1.1.2/24 |
|
GigabitEthernet0/1/8 |
3.2.1.1/24 |
|
LSRC |
Loopback1 |
3.3.3.3/32 |
GigabitEthernet0/1/8 |
3.2.1.2/24 |
The configuration roadmap is as follows:
Create an ME instance and bind it to a PW.
Enable continuity check (CC) and connectivity verification (CV) on the MEP and its remote MEP (RMEP).
Enable two-way frame DM.
To complete the configuration, you need the following data:
MEG name
ID of the virtual circuit (VC) bound to the ME
For configuration details, see "Configuration Examples" in HUAWEI NetEngine 8000 F SeriesRouter Configuration Guide - VPN or "Configuration Files" in this section.
[~LSRA] mpls-tp meg test [*LSRA-mpls-tp-meg-test] me l2vc peer-ip 3.3.3.3 vc-id 30000 vc-type vlan mep-id 1 remote-mep-id 2
[~LSRC] mpls-tp meg test [*LSRC-mpls-tp-meg-test] me l2vc peer-ip 1.1.1.1 vc-id 30000 vc-type vlan mep-id 2 remote-mep-id 1
[~LSRA-mpls-tp-meg-test] cc send enable [~LSRA-mpls-tp-meg-test] cc receive enable
[~LSRC-mpls-tp-meg-test] cc send enable [~LSRC-mpls-tp-meg-test] cc receive enable
[~LSRA-mpls-tp-meg-test] delay-measure two-way Two-way delay measure statistics delay(us): delay variation(us): 100 -- 100 0 100 0 99 1 100 1 The Max delay:100, The Max delay variation:1 The Min delay:99, The Min delay variation:0 The delay average:100, The delay variation average:1 Total sent Packets Number:5, Total received Packets Number: 5
LSRA configuration file
# sysname LSRA # mpls lsr-id 1.1.1.1 mpls mpls te # mpls l2vpn # bidirectional static-cr-lsp ingress Tunnel10 forward nexthop 2.1.1.2 out-label 20 backward in-label 20 # pw-template tpatoc peer-address 3.3.3.3 control-word tnl-policy tpatoc # interface GigabitEthernet0/1/0 undo shutdown ip address 2.1.1.1 255.255.255.0 mpls mpls te # interface GigabitEthernet0/1/0.1 vlan-type dot1q 1 mpls mpls static-l2vc pw-template tpatoc 30000 transmit-vpn-label 101 receive-vpn-label 101 # interface LoopBack1 ip address 1.1.1.1 255.255.255.255 # interface Tunnel10 ip address unnumbered interface LoopBack1 tunnel-protocol mpls te destination 2.2.2.2 mpls te signal-protocol cr-static mpls te tunnel-id 100 mpls te bidirectional mpls te reserved-for-binding # ip route-static 2.2.2.2 255.255.255.255 2.1.1.2 ip route-static 3.3.3.3 255.255.255.255 2.1.1.2 # tunnel-policy tpatoc tunnel binding destination 2.2.2.2 te Tunnel10 # mpls-tp meg test me l2vc peer-ip 3.3.3.3 vc-id 30000 vc-type vlan mep-id 1 remote-mep-id 2 cc send enable cc receive enable # return
LSRB configuration file
# sysname LSRB # mpls lsr-id 2.2.2.2 mpls mpls te # bidirectional static-cr-lsp transit lsp1 forward in-label 20 nexthop 3.2.1.2 out-label 40 backward in-label 16 nexthop 2.1.1.1 out-label 20 # interface GigabitEthernet0/1/0 undo shutdown ip address 2.1.1.2 255.255.255.0 mpls mpls te ais enable # interface GigabitEthernet0/1/8 undo shutdown ip address 3.2.1.1 255.255.255.0 mpls mpls te ais enable # interface LoopBack1 ip address 2.2.2.2 255.255.255.255 # ip route-static 1.1.1.1 255.255.255.255 2.1.1.1 ip route-static 3.3.3.3 255.255.255.255 3.2.1.2 # return
LSRC configuration file
# sysname LSRC # mpls lsr-id 3.3.3.3 mpls mpls te # mpls l2vpn # bidirectional static-cr-lsp egress lsp1 forward in-label 40 lsrid 1.1.1.1 tunnel-id 100 backward nexthop 3.2.1.1 out-label 16 # pw-template tpctoa peer-address 1.1.1.1 control-word tnl-policy tpctoa # interface GigabitEthernet0/1/0 undo shutdown ip address 3.2.1.2 255.255.255.0 mpls mpls te # interface GigabitEthernet0/1/0.1 vlan-type dot1q 1 mpls static-l2vc pw-template tpctoa 30000 transmit-vpn-label 101 receive-vpn-label 101 # interface LoopBack1 ip address 3.3.3.3 255.255.255.255 # interface Tunnel20 ip address unnumbered interface LoopBack1 tunnel-protocol mpls te destination 1.1.1.1 mpls te signal-protocol cr-static mpls te tunnel-id 200 mpls te passive-tunnel mpls te binding bidirectional static-cr-lsp egress lsp1 mpls te reserved-for-binding # ip route-static 1.1.1.1 255.255.255.255 3.2.1.1 ip route-static 2.2.2.2 255.255.255.255 3.2.1.1 # tunnel-policy tpctoa tunnel binding destination 1.1.1.1 te Tunnel10 # mpls-tp meg test me l2vc peer-ip 1.1.1.1 vc-id 30000 vc-type vlan mep-id 2 remote-mep-id 1 cc send enable cc receive enable # return